NEW STANDARD ACADEMY

SEMRI KOTHI SUPER MARKET, RAEBARELI

CLASS 12 (21-05-2024) DPP (Academy)

PHYSICS

- 1. A rectangular metal block has dimensions $3 \text{cm} \times 1 \text{cm} \times 1 \text{cm}$. The ratio of the resistance measured between the two opposite rectangular faces to that measured between the two square faces of the block is:
- (a) 1:3

(b) 1:9

(c) 3:1

- (d) 9:1
- 2. The resistance of a wire of uniform diameter d and length L is R. The resistance of another wire of the same material but diameter 2d and length 4L will be:
- (a) 2R

- (b) R
- (c) R/2

- (d) R/8
- 3. The resistance of a wire of length 300m and cross-section area 1.0 mm^2 made of material of resistivity $1.0 \times 10^{-7} \Omega m$ is:
- (a) 2Ω

- (b) 3Ω
- (c) 20Ω
- (d) 30Ω
- 4. Calculate the resistivity of the material of a wire 1 m long , 0.4 mm in diameter and having a resistance $2\Omega\colon$
- (a) $300 \Omega m$
- (b) $2.51 \times 10^{-7} \,\Omega \text{m}$
- (c) $2 \times 10^7 \Omega m$
- (d) $1 \times 10^{-15} \,\Omega m$
- 5. A wire has a resistance of 10 ohm. Its resistance if it is stretched by one-tenth of its original length is:
- (a) 12.1 Ω
- (b) 7.9Ω
- (c) 11Ω
- (d) 9 Ω
- Q 6. A wire of 10Ω resistance is stretched to thrice its original length. What will be its new resistivity:
- (a) Three times of initial resistivity
- (b) one-third of initial resistivity
- (c) Equal to initial resistivity
- (d) None of these

- Q 7. If n, e, τ and m respectively represent the density, charge relaxation 1 and mass of the electron, then the resistance of a wire of length l and area cross-section A will be:
- (a) ml ne $^2\tau A$

(b) m τ ²A ne ²

(c) $ne^2 \tau A \ 2ml$

- (d) $ne^2A^2m\tau$
- Q 8. On increasing the temperature of a conductor, its resistance increases because:
- (a) Relaxation time decreases
- (b) Mass of the electrons increases
- (c) Electron density decreases
- (d) None of the above
- Q 9. The resistance of a wire is 5 ohm at 50 °C and 6 ohm at 100 °C. The resistance of the wire at 0 °C will be:
- (a) 1 ohm

(b) 2 ohm

(c) 3 ohm

- (d) 4 ohm
- Q 10. The resistance of a semiconductor material (germanium or silicon) with rise in temperature.
- (a) increases

- (b) decreases
- (c) Remains the same
- (d) first increases then decreases

CHEMISTRY

1. Which of the following graphs is/is correct for the first order react

- a) I,II
- b) II,III

- c) I,II,III
- d) I,III
- 2. For a second order reaction $A \rightarrow$ product the graph is plotted against $\frac{1}{[A]}$ and time 't'

Tan θ =0.6 and OC=2Lmol⁻¹. The rate of reaction at beginning is.

- a) 1.25mol L⁻¹min⁻¹
- b) 0.150molL⁻¹min⁻¹
- c) 0.5 molL⁻¹min⁻¹ d) 1.50 molL⁻¹min⁻¹
- 3. For a first order reaction, the plot of t against log C gives a straight line with slope equal to

 - a) $\frac{k}{2.303}$ b) $-\frac{k}{2.303}$ c) $\frac{\ln k}{2.303}$
- d) -k
- 4. In a first order reaction, the reaction substance has half- life period of ten minutes. What fraction of the substance will be left after an hour the reaction has occurred?
 - a) 1/6 of initial concentration
 - b) 1/64 of initial concentration
 - c) 1/12 of initial concentration
 - d) 1/32 of initial concentration
- 5. Two substances A($t_{1/2}$ =5min) and B($t_{1/2}$ =15min) are taken in such a way that initially [A] = 4[B]. The time after which both the concentration will be equal is (assuming reactions are of 1st order)
 - a) 5min
- b)15min
- c)20min
- d) concentration can never be equal
- 6. The rate constant for the reaction A \rightarrow B is 2×10^{-4} L.mol⁻¹. The concentration of A at which rate of the reaction is $(1/12) \times 10^{-5}$ M sec⁻¹ is

- a) 0.25M
- b) $(1/20) \sqrt{5/3}$ M
- c) 0.5M

- d) None of these
- 7. In presence of HCl, sucrose gets hydrolysed into glucose and fruct . The concentration of sucrose was found to reduce from 0.4M to 0.2M in 1 hour and to 0.1 M in total of 2 Hours, The order of the t reaction is
 - a) Zero

- c)two
- d) None of the
- 8. A straight line was obtained on plotting $\log_{10} \frac{dx}{dt}$ vs. $\log_{10} (a-x)^n$ w an intercept on

 $\log_{10}\left(\frac{dx}{dt}\right)$ axis equal to 0.6021. The rate constant for the reaction is litreⁿ⁻¹ mol¹t⁻¹

- 9. The half life period of a reaction, becomes 16 times when reactant concentration is halved. The order of reaction is
- 10. Compounds A and B react with a common reagent with first order kinetics in both cases .If 99% of A must react before 1% of B has reacted. The minimum ratio for their respective rate constants is $(Given \frac{2}{2-log} = 458)$

BIOLOGY

- 1. The genetic code is called a degenerate code because
 - a) One codon has many meanings
 - b) More then one codon has the same meaning
 - c) One codon hs one meaning
 - d) There are 64 codons present
- 2. Activatation of an amino acid during protein synthesis requires a participation of seecific molecule of
 - a) mRNA

b) tRNA

c) rRNA

- d) All of these
- 3. The first amino acid in any polypeptide chain of prokaryotes is alwa
 - a) Formylated arginine
- b) Lysine
- c) Formylated methionine
- d) methionine
- 4. Part of a gene which codes for an enzyme is called
 - a) Cistron

b) Exon

c) Intron

d) Codon

- 5. Which one of the following pairs is correctly matched
 - a) Ribosomal RNA Carries amino acide to the site of protein synthesis
 - b) Transcription Process by which protein is
 - Synthesized
 - Process by which mRNA carries c) Translation the information from nucleus to
 - ribosomes
 - d) Anticodon Site of t-RNA molecule that binds to the m-RNA
- 6. Estimated number of genes in human being is
 - a) 3000

b) 80,000

c) 25,000

d) 3×10^9

- 7. The probes used in DNA fingerprinting technique are
 - a) Radioactive natural DNA/RNA with Known Segunces
 - b) Radioactive synthetic DNA/RNA with unknown sequences
 - c) Radioactive natural DNA/RNA with unknown sequences
 - d) Radioactive synthetic DNA/RNA with known sequences
- 8. Which of the following sequence of steps is correct in DNA Fingerprinting?
 - a) Southern blotting Electrophoresis, Hybridization, Autoradiography
 - b) Autoradiography, Electrophoresis, Hybridization, Southern blotting
 - c) Electrophoresis, Southern blotting, Hybridization, Autoradiography
 - d) Hybridization, , Southern blotting, Electrophoresis, Autoradiography
- 9. Hypervariable region of DNA is Formed of
 - a) Minisatellite DNA

b) Microsatellite DNA

c) Probes

d) Both (1) and (2)

- 10. Which is a characteristic of DNA sequences at the telomeres?
 - a) They consist of guanine and adenine (or thymine)
 - b) They consist of repeated sequences.
 - c) On strand protrudes beyond the other creating some single stranded DNA at the end.
 - d) All of the above

MATHS

1.
$$\begin{vmatrix} 1 & \cos\alpha & \cos\beta \\ \cos\alpha & 1 & \cos\gamma \\ \cos\beta & \cos\gamma & 1 \end{vmatrix} = \begin{vmatrix} 0 & \cos\alpha & \cos\beta \\ \cos\alpha & 0 & \cos\gamma \\ \cos\beta & \cos\gamma & 0 \end{vmatrix} \text{ holds if } \cos^2\alpha + \cos^2\beta + \cos^2\gamma =$$
a) 1 b)2 c)3/2 d)1/2

2. The α , β , γ are roots of the equation $x^2(px+q)=r(x+1)$, then the

value of determinant
$$\begin{vmatrix} 1+\alpha & 1 & 1\\ 1 & 1+\beta & 1\\ 1 & 1 & 1+\gamma \end{vmatrix}$$
 is

- a) α, β, γ b) $1 + \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ c) 0 d) none of these
- 3. If $a = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}$, then $\begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix}$ is
 - a) Purely
 - b) Purely Imaginary
 - c) 0
 - d) None of these
- 4. Given that α is a root of $x^4=1$ with negative principal argument

and
$$\Delta(\alpha) = \begin{vmatrix} 1 & 1 & 1 \\ \alpha^n & \alpha^{n+1} & \alpha^{n+3} \\ \frac{1}{\alpha^{n+1}} & \frac{1}{\alpha^n} & 0 \end{vmatrix} n \in N$$

Now consider the following two statements:

 S_1 : Principal argument of $\Delta(\alpha)$ is $-\frac{3\pi}{4}$

$$S_2$$
: $|\Delta(\alpha)^2| = 16$

- a) Only S1 is true
- b) Only s2 is true
- c) Both are false
- d) Both are true
- 5. Let $\Delta_1 = \begin{vmatrix} x & b & b \\ a & x & b \\ a & a & x \end{vmatrix}$ and $\Delta_2 = \begin{vmatrix} x & b \\ a & x \end{vmatrix}$ be two determinants then

b)
$$\frac{d}{dx}$$
 (Δ_1)=3 Δ_2

c)
$$\frac{d}{dx} \Delta_1 = 3(\Delta_2)^2$$

d)
$$\Delta_1 = 3\Delta_2^{3/2}$$

6. If $\omega \neq 1$ is a cube root of unity and

$$\Delta = \begin{vmatrix} x + \omega^2 & \omega & 1 \\ \omega & \omega^2 & 1 + x \\ 1 & x + \omega & \omega^2 \end{vmatrix}$$

- a) 0
- b) 1 c)-1
- d) none of these
- 7. If $\alpha\beta\gamma$ are the root of $x^3+px^2+q=0$, where $q\neq 0$, then

$$\Delta = \begin{vmatrix} 1/\alpha & 1/\beta & 1/\gamma \\ 1/\beta & 1/\gamma & 1/\alpha \\ 1/\gamma & 1/\alpha & 1/\beta \end{vmatrix}$$
 equals

- a) -p/q

- b)1/q c) p^2/q d) none of these
- 8. If a-2b+c=1, then the value of $\begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix}$ is
 - a) X
- b) –x
- c) -1
- d) 1
- 9. In a triangle ABC, if a, b and c are the sided opposite to angles A,B and C respectively, then the value of

$$\begin{vmatrix} bcosC & a & c cosB \\ c cosA & b & a cosC \\ a cosB & c & b cosA \end{vmatrix}$$

$$10. \text{ If } f(x) = \begin{vmatrix} \sin x & \cos x & \tan x \\ x^3 & x^2 & x \\ 2x & 1 & x \end{vmatrix} \text{ then } \frac{\lim_{x \to a} f(x)}{x^2} = \frac{1}{2}$$